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Abstract. We present support theory, a set of techniques for bounding extreme eigenvalues
and condition numbers for matrix pencils. Our intended application of support theory is to enable
proving condition number bounds for preconditioners for symmetric, positive definite systems. One
key feature sets our approach apart from most other works: We use support numbers instead of
generalized eigenvalues. Although closely related, we believe support numbers are more convenient
to work with algebraically.

This paper provides the theoretical foundation of support theory and describes a set of analyt-
ical tools and techniques. For example, we present a new theorem for bounding support numbers
(generalized eigenvalues) where the matrices have a known factorization (not necessarily square or
triangular). This result generalizes earlier results based on graph theory. We demonstrate the utility
of this approach by a simple example: block Jacobi preconditioning on a model problem. Also, our
analysis of a new class of preconditioners, maximum-weight basis preconditioners, in [E. G. Boman,
D. Chen, B. Hendrickson, and S. Toledo, Numer. Linear Algebra Appl., to appear] is based on results
contained in this paper.
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1. Introduction. The solution of linear systems of equations is at the heart
of many computations in science, engineering, and other disciplines. Iterative meth-
ods are often the most efficient means to solve such systems. In many cases, the
matrix describing the system is symmetric, positive definite, in which case the pre-
conditioned conjugate gradients method is the algorithm of choice. The cost of using
an iterative method like preconditioned conjugate gradients is the cost of a single
iteration (involving the operation of the matrix and of the preconditioner on a vec-
tor) multiplied by the number of iterations. Preconditioning is important to keep the
number of iterations small. For (preconditioned) conjugate gradients or Chebyshev
iteration, the number of iterations is known to be bounded by a constant times the
square root of the condition number (after preconditioning). This analysis is based
on Chebyshev polynomials and represents a worst-case scenario, so in practice the
number of iterations may be much smaller, for instance, when the eigenvalues are
clustered. Still, the spectral condition number is a useful indicator of the quality of
a preconditioner.

The dual goals of finding a preconditioner that is both of good quality and inex-
pensive to compute and apply often conflict, and the design of effective preconditioners
continues to be a very active area of research. Many of the best preconditioners are
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specialized to individual problems. Some general-purpose preconditioning techniques
include variants of incomplete factorizations, approximate inverses, algebraic multi-
level methods, or domain decomposition. None of these approaches is a panacea, and
preconditioning remains as much an art as a science. One of the biggest problems
with preconditioning is that convergence analysis is generally limited to simple model
problems. For problems with irregular numerical or topological structure, condition
number bounds are generally difficult to obtain.

Much work has been done in the field of bounding eigenvalues and condition
numbers. In this paper we introduce support theory as a mathematical framework to
analyze condition numbers of preconditioned systems. Our focus will be on symmet-
ric positive definite (spd) and symmetric positive semidefinite (spsd) systems. We
provide a set of tools with which one can bound support numbers (to be defined in
the next section). Support numbers are closely related to generalized eigenvalues.
Several authors have earlier derived eigenvalue bound techniques for certain fami-
lies of preconditioners, in particular incomplete factorizations; see, for example, work
by Axelsson and Barker [3], Axelsson [1], Beauwens [4, 5], Magolu and Notay [20],
Magolu [19], and Notay [21, 22]. Although some of the basic tools in the present
paper have implicitly been used earlier by others, we believe that our main support
theory results (section 4) are new and different. Also, these results apply to all spsd
matrices, not just M-matrices.

Many of our support theory techniques can be viewed as an algebraic generaliza-
tion of recent work on a little-known technique called support-graph preconditioning;
hence the name. Several core ideas in support-graph theory can be traced back to
Beauwens [5] and were rediscovered by Vaidya, who used them to study spanning tree
preconditioners [28]. The techniques were extended and applied to multilevel methods
by Gremban [11], Gremban, Miller, and Zagha [12], Reif [24], and Bern et al. [6]. The
resulting methods have been applied to the analysis of incomplete Cholesky factor-
ization by Guattery [13] and by Bern et al. [6] and to multilevel diagonal scaling [6].
Unfortunately, support-graph theory is fairly limited in its applicability. It applies
only to spsd diagonally dominant M-matrices (a subset of Stieltjes matrices) and,
in some cases, to all spsd diagonally dominant matrices. In contrast, our algebraic
support theory applies to all spsd matrices. Furthermore, as we discuss in section 9,
support-graph theory is a special case of our methodology.

In this paper we present a collection of propositions and theorems, some of which
are quite elementary and correspond to well-known facts in linear algebra. We show
that the support number used in our analysis is the largest generalized eigenvalue
in a certain subspace. More specifically, support numbers are well-defined under
rank-deficiency and in that sense more robust than generalized eigenvalues. The
support number definition is often easier to work with than that of eigenvalues. Our
hope is that by reformulating results in terms of support numbers and gathering
them into a single paper, this will become a useful resource for future work. This
paper forms the foundation for several forthcoming papers by the present authors
and collaborators.

In section 2 we review the concept of support number and describe how it can be
used to bound condition numbers. In section 3 we provide a collection of fundamental
algebraic properties of support numbers. This is followed in section 4 with our most
important set of tools and techniques for analyzing preconditioners. In section 5
we expand our tool kit to address diagonal matrices (preconditioners). A few basic
results about Schur complements are stated in section 6. We then present some fairly
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specialized techniques for analyzing Hadamard products and negative semidefinite
matrices in sections 7 and 8, respectively. We discuss the relationship between this
paper and previous work on support-graph theory in section 9. In section 10 we
demonstrate how our support tools can be used to analyze a simple, well-known
preconditioner, namely, block Jacobi preconditioning. In section 11 we propose a
generalization of support numbers that may be useful for analyzing nonsymmetric or
indefinite systems.

2. Support theory definitions and concepts. The main goal of the support
theory in this paper is to provide techniques to bound the generalized eigenvalues and
condition number for a matrix pencil (A,B). Think of B as being a preconditioner for
A. We study only real matrices in this paper, but most of the results carry over to the
complex case (substitute Hermitian for symmetric). If both A and B are spd, then
the convergence of many preconditioned iterative methods (and, specifically, precon-
ditioned conjugate gradients) depends on the condition number of the preconditioned
operator B−1/2AB−1/2. We define the generalized (spectral) condition number by

κ(A,B) ≡ κ(B−1/2AB−1/2) =
λmax(B

−1/2AB−1/2)

λmin(B−1/2AB−1/2)
=
λmax(A,B)

λmin(A,B)
,

where λ(A) denotes an eigenvalue of A while λ(A,B) denotes a generalized eigenvalue
for (A,B).

The central concept in support theory is the support number of a matrix pair
(A,B), sometimes simply called the support. We remark that the definition we use is
slightly different from the one in [6] and [11] but only when A or B is indefinite.

Definition 2.1. The support number of (A,B), where A ∈ R
n×n, B ∈ R

n×n,
is defined by

σ(A,B) = min
{
t ∈ R |xT (τB −A)x ≥ 0 for all x ∈ R

n and for all τ ≥ t} .
For some pencils (A,B), there is no such t and we define the support number

σ(A,B) to be ∞. Similarly, if τB−A is positive semidefinite (psd) for all τ we define
the support number to be −∞. (This cannot happen if B is psd.) In this paper,
we say that a matrix C is psd if yTCy ≥ 0 for all real vectors y, even if C is not
symmetric (cf. [10, section 4.2]).

The definition above does not require A and B to be symmetric. However, sym-
metric matrices will be the main focus of this paper. We remark that by choosing
B = I, the techniques in this paper can be used to bound the largest eigenvalue
and spectral condition number of A. For symmetric matrices, the support is closely
related to a generalized eigenvalue. Axelsson [1, Corollary 2.1] showed the following
result.

Lemma 2.2. Suppose A is spsd and B is spd. For any τ such that λmin(τB−A) ≥
0 we have

λmax(B
−1A) ≤ τ.

In other words, an upper bound on the support number σ(A,B) is also a bound on
the generalized eigenvalue λmax(A,B) ≡ max{λ |Ax = λBx, x 	= 0}. (More general
versions of this lemma can be found as Theorem 3.16 and Theorem 10.1 in [2].) Next,
we elaborate on this important result and include the case where B is spsd and may
be singular. The theorem below is an extension of Gremban’s support lemma [11,
Lemma 4.4] and similar lemmas in [6].
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Theorem 2.3. Let A and B be symmetric matrices.
1. If B is spd, then σ(A,B) = λmax(A,B).
2. If B is spsd and Null(B) ⊆ Null(A), then

σ(A,B) = max {λ |Ax = λBx, Bx 	= 0} ,
or, equivalently,

σ(A,B) = λmax(Z
TAZ,ZTBZ),

where Z is such that the columns of Z span the range of B.
3. If B is not spsd, then σ(A,B) is infinite.
Proof. The first part follows from the variational characterization

λmax(A,B) = τ max
x�=0

xTAx

xT (τB)x
,

where B is assumed to be spd. For any τ such that xT (τB − A)x ≥ 0 the condition
above implies that λmax(A,B) ≤ τ . Equality holds when τ is the largest generalized
eigenvalue and x is the corresponding eigenvector. To show the second part, use the
same argument but restrict x to the space where Bx 	= 0. For the third part, let x be
a vector such that xTBx < 0. Then xT (τB −A)x < 0 for any sufficiently large τ , so
the support is unbounded (infinite).

The support number can therefore be interpreted as an extension of generalized
eigenvalues that is robust under rank-deficiency. When both matrices are spd, then
the (generalized) condition number is the ratio of the largest to smallest generalized
eigenvalues.

Proposition 2.4. When A and B are both spd, the generalized condition number
κ(A,B) satisfies κ(A,B) = σ(A,B)σ(B,A).

Proof. By Theorem 2.3, σ(A,B) = λmax(A,B), and therefore σ(B,A) =
1/λmin(A,B).

The condition number is unbounded (infinite) if either A or B is rank deficient,
but σ(A,B)σ(B,A) may still be finite and can therefore be viewed as a more robust
generalization of the condition number. In practice one should be cautious about
using a singular matrix as a preconditioner.

Our technique to bound the support of (A,B) is to break the matrices up into
pieces which are in some sense simpler. In the sections that follow, simple can mean
different things, for example, sparse and of low rank. We will rely heavily upon the
following splitting principle, a slight variation of Lemma 4.7 in [11].

Proposition 2.5 (splitting). Split A and B into A = A1 + A2 + · · · + Aq and
B = B1 +B2 + · · ·+Bq. If all Bi are psd, then σ(A,B) ≤ maxi σ(Ai, Bi).

The key to proving good support bounds is to find good splittings of A and B.
(We remark that “multisplitting” might be a more appropriate term since the matrices
can be split into several parts.) In our framework, each Bi must be psd, while there
is no restriction of the definiteness of Ai. However, in practice we usually employ
splittings where all the Ai are also spsd.

An important observation for using support theory is that one may use different
splittings of A and B when proving bounds on σ(A,B) and σ(B,A). Different split-
tings may give quite different bounds on the condition number, so identifying good
splittings is crucial.

In some applications, there is a natural splitting of the form A = ΣiAi. For
example, in finite element analysis, A could correspond to the global mass or stiffness
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matrix, while each Ai corresponds to an element matrix. Analysis by splitting into
element matrices is a technique used by several authors and goes back at least to the
early 1970s. Irons and Treharne [17] described the splitting theorem in the context
of finite elements as “a familiar but undervalued theorem” and advocated that it
should be taught in finite element courses. More recently, Wathen [30] and Lee and
Wathen [18] used the splitting property to prove upper and lower eigenvalue bounds
for element-by-element preconditioners. Similar splittings are also used in domain
decomposition [26]. We do not discuss finite elements any further here because it is
outside the scope of the present paper.

3. Fundamental properties of support numbers. We state some fundamen-
tal properties of the support number and skip the simplest proofs.

Proposition 3.1. When A is psd and α 	= 0, then σ(αA,A) = α.
Proposition 3.2. Let B be psd and α > 0. Then σ(αA,B) = ασ(A,B) and

σ(A,αB) = α−1σ(A,B).
Proposition 3.3. If B is psd, then

σ(A+ C,B) ≤ σ(A,B) + σ(C,B).

Proposition 3.4. If B and C are psd, then

σ(A,B + C) ≤ σ(A,B)σ(A,C)

σ(A,B) + σ(A,C)
≤ 1

2
max {σ(A,B), σ(A,C)} .

Proof. Using Propositions 3.2 and 2.5, we have that σ(A,B + C) = σ( 1
2A+ 1

2A,
B + C) ≤ 1

2 max{σ(A,B), σ(A,C)}, which proves the weaker bound. The stronger
bound is derived similarly by a splitting A = αA+(1−α)A for α such that ασ(A,B) =
(1− α)σ(A,C).

Proposition 3.5. If B and C are psd, then

σ(A,B) ≤ σ(A+ C,B).

When A and B − C are also psd, then

σ(A,B) ≤ σ(A,B − C).

The triangle inequality holds for support numbers.
Proposition 3.6. Suppose that B and C are psd. Then

σ(A,C) ≤ σ(A,B)σ(B,C).

Note that none of the propositions in this section so far require symmetry. The
support number essentially ignores the nonsymmetric part of the matrices, as shown
below.

Proposition 3.7. Suppose that B is psd. Then σ(A,B) = σ(AT , B) = σ(A,BT ),
and hence

σ(A,B) = σ(Sym(A), Sym(B)),

where Sym(X) ≡ 1
2 (X +XT ) denotes the symmetric part of X.

Proof. The result follows from Definition 2.1 and the fact that xTAx = xTATx
for any square (not necessarily symmetric) matrix.
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Corollary 3.8. Suppose that A, B, and C are spsd. Then

σ(AC,B) = σ(CA,B) and σ(A,BC) = σ(A,CB).

Proof. By using Proposition 3.7 and the symmetry of A and C, we have that
σ(AC,B) = σ((AC)T , B) = σ(CTAT , B) = σ(CA,B). Similarly for the second
part.

We will use a well-known eigenvalue result; see, for example, Corollary 3.14 in [2].
Lemma 3.9. Let A and B be spsd matrices of the same order. Then

λmax(AB) ≤ λmax(A)λmax(B).

Using this lemma and Theorem 2.3, we get the following results for symmetric
matrices.

Proposition 3.10. When A, B, and C are all spsd, then

σ(AC,B) ≤ λmax(C)σ(A,B).

Proof. Suppose that B is nonsingular. Then σ(AC,B) = λmax(B
−1AC) ≤

λmax(B
−1A)λmax(C) ≤ λmax(C)σ(A,B). If B is singular, the same argument holds

in a subspace (the range of B).
The next proposition extends lemmas that were used by Gremban [11] and by

Bern et al. [6] to partially factor a matrix and preconditioner while maintaining a
bound on the support number.

Proposition 3.11. Let B ∈ R
n×n be spsd. Then for any G ∈ R

n×p,

σ(GTAG,GTBG) ≤ σ(A,B),

and if Null(GT ) ⊆ Null(A) and Null(GT ) ⊆ Null(B), then

σ(GTAG,GTBG) = σ(A,B).

Proof. Let τ = σ(A,B). Then xT (τB − A)x ≥ 0 for all x. For any y ∈ R
p, let

x = Gy. Then yTGT (τB−A)Gy ≥ 0, and it follows that σ(GTAG,GTBG) ≤ τ . This
proves the first part of the proposition. For the second part, note that Null(GT ) =
Range(G)⊥. Any vector x ∈ R

n can be split into two parts, x = x̂ + x̃, where
x̂ ∈ Range(G) and x̃ ∈ Null(GT ). Suppose Null(GT ) ⊆ Null(A) and Null(GT ) ⊆
Null(B). It follows that xT (τB−A)x = x̂T (τB−A)x̂, and since x̂ ∈ Range(G) there
exists y such that x̂ = Gy.

Proposition 3.12. Suppose that A and B are spd. Then σ(A,B) = σ(B−1, A−1).
Proof. First consider the case where B = I. Let C = A1/2 be a symmetric square

root of A, that is, A = CCT = C2. From Proposition 3.11 (with G = C−1) it follows
that

σ(A, I) = σ(C−TAC−1, C−TC−1) = σ(I, A−1).

The general case where B 	= I can be reduced to the case where B = I. Let
B1/2 denote a symmetric square root of B. Then σ(A,B) = σ(B−1/2AB−1/2, I)
and σ(B−1, A−1) = σ(I,B1/2A−1B1/2), and the desired reduction is complete.

The next result is a slight generalization of Lemma 3.3 in [6], which was used to
prove a bound on modified incomplete Cholesky preconditioners.
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Proposition 3.13. When A and B are psd, then

σ(A,B) ≤ 1

1− σ(A−B,A) .

Proof. Let τ ′ = σ(A−B,A). Observe that τ ′ ≤ 1 because A−(A−B) = B is psd.
Also, τ ′A−(A−B) is psd by Definition 2.1. We have that τ ′A−(A−B) = B−(1−τ ′)A;
hence 1

1−τ ′B −A is also psd because τ ′ ≤ 1. Consequently, σ(A,B) ≤ 1
1−τ ′ .

The following proposition may be useful when A andB are spsd but not diagonally
dominant since there are more efficient algorithms for solving diagonally dominant
systems. By choosing C to be diagonal with sufficiently large positive elements, A+C
and B + C can be made diagonally dominant.

Proposition 3.14. Suppose A and B are psd. Then for any psd C and α > 0
such that ασ(A+ C,B + αC) ≤ 1, then

σ(A,B) ≤ σ(A+ C,B + αC).

Proof. For any α > 0 there exists a τ such that τ(B + αC) − (A + C) is spsd.
Consequently, τB − A is spsd when (1 − τα)C is spsd. By assumption, τα ≤ 1, so
the desired result follows.

When A and B have block diagonal structure, the support number can be com-
puted by looking at the blocks independently and taking the maximum. This is a
special case of splitting where equality holds.

Proposition 3.15. Suppose B is psd and A,B are of the form

A =

(
A11 0
0 A22

)
, B =

(
B11 0
0 B22

)
.

Then σ(A,B) = max {σ(A11, B11), σ(A22, B22)}.
In some situations it is helpful to obtain a support bound by expanding the

matrices into a higher dimension. The following proposition explains how.
Proposition 3.16. Let A11, B11 denote principal submatrices of A and B, re-

spectively. Then σ(A11, B11) ≤ σ(A,B).
Proof. Let τ = σ(A,B). Then τB−A is psd. Any principal submatrix of τB−A

is also psd; in particular, τB11 −A11.

4. Main support results. This section contains our main results. Recall from
Proposition 2.5 that we want to break A and B into sums of simple pieces. A key kind
of simplicity that we will exploit is to have the pieces be of low rank. We can exploit
the fact that symmetric rank-1 and rank-2 matrices have spectra that are simple to
express.

Lemma 4.1. Let A = uuT . Then all eigenvalues of A are zero except λ1(A) =
uTu. Furthermore, if B is invertible (nonsingular), then all generalized eigenvalues
of (A,B) are zero except λ = uTB−1u.

Lemma 4.2. Let A = uvT + vuT . Then all the eigenvalues of A are zero except
λ1,2(A) = ±‖u‖2‖v‖2 + u

T v.
Lemma 4.1 gives us a formula for the support for a symmetric rank-1 matrix A.
Proposition 4.3. Let A = uuT and let B be spd. Then

σ(A,B) = uTB−1u.

Proof. From Theorem 2.3 we have that σ(A,B) = λmax(A,B). By Lemma 4.1,
all the eigenvalues λ(A,B) are zero except one, which is uTB−1u. Since B is spd,
uTB−1u > 0 for any u, so λmax(A,B) = u

TB−1u.
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Next we show a more general result that includes the case where B is semidefinite
and does not have full rank.

Theorem 4.4 (rank-1 support theorem). Suppose u ∈ R
n is in the range of

V ∈ R
n×k. Then

σ(uuT , V V T ) = min
w
wTw subject to V w = u.

Proof. Let w be a vector that satisfies V w = u. By applying Proposition 3.11,
we get

σ(uuT , V V T ) = σ(V wwTV T , V V T ) ≤ σ(wwT , I) = wTw.

Next we prove that there exists a w such that equality holds. The smallest norm solu-
tion to V w = u is given by w = V +u, where V + is the Moore–Penrose pseudoinverse of
V [10, p. 243]. We have that σ(uuT , V V T ) = λmax(V

+uuT (V +)T ) = ‖V +u‖2
2.

We remark that any w satisfying V w = u gives an upper bound on σ(uuT , V V T ).
Further observe that when V has full column rank, then there is a unique w such that
V w = u. The theorem above can also be restated in terms of the pseudoinverse, that
is, σ(uuT , V V T ) = ‖V +u‖2

2.
Note that all spsd matrices can be constructed as a sum of symmetric outer

products like those in the theorem. For instance, the Cholesky decomposition (in
outer-product form) provides such a splitting. However, there are many alternatives,
and the Cholesky decomposition may not be the best choice for proving bounds or
building preconditioners.

In the special case where each column of U and V has only two nonzero entries
and these entries have the same magnitude, this proposition reduces to the congestion-
dilation lemma discussed in section 9. The congestion-dilation lemma is based on a
specific graph interpretation that we will examine in section 9 and is the cornerstone
of support-graph theory [11, 6]. In support-graph theory, the vector u with its two
nonzeros in locations i and j represents an edge between vertices i and j, and the set of
columns of V corresponds to a path (a sequence of edges) between the same vertices.
Unfortunately, only a very limited class of matrices can be represented as sums of
outer products of these specialized vectors. Specifically, as discussed in section 9, if
the two values are of the opposite sign, then all symmetric, diagonally dominant, psd
M-matrices can be generated. And if values of the same sign are included, then the
class grows to be all symmetric, diagonally dominant, psd matrices. Support-graph
theory is limited to these classes of matrices. But with a general u, the much more
important class of spsd matrices can be addressed.

We next state the higher-rank generalization of Theorem 4.4.
Theorem 4.5 (symmetric product support). Suppose U ∈ R

n×k is in the range
of V ∈ R

n×p. Then

σ(UUT , V V T ) = min
W

‖W‖2
2 subject to VW = U.

Proof. Let W satisfy VW = U . Then

σ(UUT , V V T ) = σ(VWWTV T , V V T ) ≤ σ(WWT , I)

= λmax(WW
T ) = ‖W‖2

2.

As in the proof of Theorem 4.4, one can show that equality is achieved for W =
V +U .
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We will often use this theorem as a tool for obtaining an upper bound on
σ(UUT , V V T ). Note that any W for which VW = U provides an upper bound
on the support number. One special case of interest is when the columns of U are a
subset of the columns of V (or vice versa).

Corollary 4.6. Suppose the columns of U are a subset of the columns of V .
Then σ(UUT , V V T ) ≤ 1.

The result above follows by letting W be an appropriate subset of the identity
matrix, so ‖W‖2

2 ≤ 1. Alternatively, it is easy to show that V V T − UUT is spsd,
which also gives a bound of one for the support number.

The following theorem is a slight generalization of Theorem 4.5.
Theorem 4.7. Suppose U ∈ R

n×k is in the range of V ∈ R
n×p and let D ∈ R

k×k

be symmetric. Then

σ(UDUT , V V T ) ≤ λmax(WDW
T ) ≤ λmax(D)‖W‖2

2

for all W such that VW = U .
Proof. Let W satisfy VW = U . Then

σ(UDUT , V V T ) = σ(VWDWTV T , V V T ) ≤ σ(WDWT , I) = λmax(WDW
T ),

which proves the first part. The second follows from λmax(WDW
T ) = λmax(DW

TW )
≤ λmax(D)λmax(W

TW ) = λmax(D)‖W‖2
2.

Recall that the support number may be negative.
Corollary 4.8. Suppose U ∈ R

n×k is in the range of V ∈ R
n×p and let D be

a block diagonal matrix in R
k×k, where the blocks are either of the type ±1 or ( 0 1

1 0 ).
Then σ(UDUT , V V T ) ≤ ‖W‖2

2 for all W such that VW = U .
Proof. The eigenvalues of D can only take on two different values: 1 or −1. Hence

λmax(D) ≤ 1, and the result follows from Theorem 4.7.
We remark that any symmetric matrix (possibly indefinite) has a decomposition

of the type UDUT , where U is square and lower triangular and D is as described in
the corollary above. However, this may not be the best way to apply the corollary.

Further note that ‖W‖2
2 may be expensive to compute. Nonetheless, as is well

known, the 2-norm can be bounded by easy-to-compute quantities.
Lemma 4.9. For any matrix W , we have that
(i) ‖W‖2

2 ≤ ‖W‖1‖W‖∞ = (maxj
∑

i |Wij |) (maxi
∑

j |Wij |),
(ii) ‖W‖2

2 ≤ ‖W‖2
F =

∑
i,jW

2
ij.

Most of the preceding set of results have involved symmetric outer products to
construct low rank matrices. We now extend the rank-1 support theorem to the rank-2
case.

Theorem 4.10. Suppose u, v ∈ R
n are in the range of Y ∈ R

n×k. Then

σ(uvT + vuT , Y Y T ) ≤ ‖w‖2‖ŵ‖2 + w
T ŵ

for any w and ŵ such that Y w = u and Y ŵ = v.
Proof.

σ(uvT + vuT , Y Y T ) = σ(Y (wŵT + ŵwT )Y T , Y Y T )

≤ σ(wŵT + ŵwT , I)

= λmax(wŵ
T + ŵwT )

= ‖w‖2‖ŵ‖2 + w
T ŵ by Lemma 4.2.
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Corollary 4.11. Suppose u, v ∈ R
n are in the range of Y ∈ R

n×k. Then

σ(uvT + vuT , Y Y T ) ≤ 2‖w‖2‖ŵ‖2 ≤ ‖w‖2
2 + ‖ŵ‖2

2

for all w, ŵ such that Y w = u, Y ŵ = v.
Proof. The result follows from Theorem 4.10 and the Cauchy–Schwarz inequal-

ity.
We can extend Theorem 4.10 to the case where U and V are matrices.
Theorem 4.12. Suppose U, V ∈ R

n×p are in the range of Y ∈ R
n×k. Then

σ(UV T + V UT , Y Y T ) ≤ λmax(WŴ
T + ŴWT ) ≤ 2‖W‖2‖Ŵ‖2

for any W and Ŵ such that YW = U and Y Ŵ = V .
We omit the proof because it is essentially a combination of the proofs of Theo-

rem 4.10 and of Corollary 4.11.

5. Diagonal support. In section 4 we described tools for bounding support
numbers when the pieces involved have low rank. Another kind of simple structure we
can exploit occurs when one of the matrices is diagonal. Any matrix can be supported
by a positive diagonal matrix. We remark that computing the exact support σ(A,B)
when B is diagonal is not much easier than for a general spd B and requires the
computation of an extremal eigenvalue.

Fortunately, we will see that it is easy to obtain a bound. We need the following
well-known fact, which is easily derived from Gerschgorin’s theorem.

Lemma 5.1. If A is symmetric, weakly (strictly) diagonally dominant, and has
nonnegative diagonal entries, then A is spsd (spd).

Using the above lemma, one way to bound σ(A,B) is to find τ such that τB−A
is diagonally dominant with positive diagonal entries. Unfortunately, this strategy
only works for certain B and, further, computing the optimal value of τ may require
the solution of a linear program. However, when B is diagonal we can obtain a bound
as follows.

Theorem 5.2. Suppose A is symmetric (not necessarily spd) and B is diagonal
with bii ≥ 0 for all i. Assume that W = {wij} satisfies wij > 0 and wij = 1/wji for
all i and j, and that bii = 0 only if aii +

∑
j �=i wij |aij | ≤ 0. Then

σ(A,B) ≤ max
i

{
aii +

∑
j �=i wij |aij |
bii

}
, bii 	= 0.

Proof. We will describe how to find an spsd matrix Â such that D ≡ A + Â is
diagonal. From Proposition 3.5 it follows that σ(A,B) ≤ σ(A + Â, B) = σ(D,B).
Let Â =

∑
ij Âij , where Âij is chosen to cancel out the off-diagonal element aij .

Specifically, Âij is zero except in rows and columns i and j, where it is

(|aij |/wij −aij
−aij |aij |wij

)
=

(|aij |wji −aij
−aij |aij |wij

)
.

Consequently, D = A + Â is diagonal. By simple algebra, dii = aii +
∑

j �=i wij |aij |,
and the desired result follows.

By setting B = I, we obtain an interesting eigenvalue bound.
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Corollary 5.3. Let A be a symmetric matrix (not necessarily spd). Then for
any positive matrix W such that wij = 1/wji for all i and j,

λmax(A) ≤ max
i


aii +

∑
j �=i

wij |aij |

 .

By setting all the wij values to be 1, we get a different special case.
Corollary 5.4. Suppose A is symmetric (not necessarily spd), B ≥ 0 is diago-

nal, and bii = 0 only if aii +
∑

j �=i |aij | ≤ 0. Then

σ(A,B) ≤ max
i

{
aii +

∑
j �=i |aij |
bii

}
, bii 	= 0.

When B = I and all the wij values are 1, then each of these corollaries reduces
to Gerschgorin’s well-known bound on the maximal eigenvalue. Furthermore, Theo-
rem 5.2 contains as a special case the scaled Gerschgorin bound obtained by diagonal
scaling of A, that is, the Gerschgorin eigenvalue bound for SAS−1 where S is diagonal.

How can we choose W to improve the bound? Computing the optimal W is diffi-
cult and could even be more expensive than computing λmax(A) directly. Intuitively,
we want to choose wij small when row i has a large (absolute) row sum, i.e., when
aii +

∑
k �=i |aik| is large. One possible such strategy is to let

wij =
ajj +

∑
k �=j |ajk| − a0

aii +
∑

k �=i |aik| − a0
,

where a0 = mini aii. (Because we subtract a0, the bound is invariant under shifting
of the eigenvalues.) We remark that the proposed bound is often, but not always,
better than the Gerschgorin bound. For example, for

A =


3 2 1
2 6 3
1 3 9


 ,

the Gerschgorin bound is 13 but our new bound is 11.7. The largest eigenvalue is 11.3.
An alternative approach is to start out with wij ≡ 1 and then iteratively pick an

entry wij to adjust. Keeping all other coefficients fixed, one can compute a new value
for wij that tightens the eigenvalue bound.

We note that tighter bounds may be obtained by using matrices with nonzeros in
more than two rows (columns) to cancel out positive off-diagonals. Such a strategy
requires finding cliques in the graph of the matrix. We do not examine this option
any further here.

A technique used by several previous authors for preconditioning diagonally dom-
inant matrices is to first subtract a diagonal matrix such that the remaining part is
semidefinite and rank deficient. Then one preconditions the semidefinite part using
support theory and adds back the diagonal part. The following lemma is used. (Note
that in this and the subsequent lemmas, D is a general spsd matrix, but for current
purposes we are interested in the case where D is diagonal.)

Lemma 5.5. If A is symmetric and B and D are spsd, then σ(A+D,B +D) ≤
max{σ(A,B), 1}.

Clearly, the diagonal elements are not fully exploited in this approach. Basically,
B supports A while D supports only itself. Going to the other extreme, we could let
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D support both A and D, which yields σ(A+D,B+D) ≤ σ(A+D,D) ≤ σ(A,D)+1.
This method is also unsatisfactory because B is not utilized at all. A better approach
is to let parts of D support A and parts of it support itself. From this idea we obtain
the following result.

Proposition 5.6. If A is symmetric and B and D are spsd, then

σ(A+D,B +D) ≤ 1 + σ(A,D)

1 + σ(A,D)/σ(A,B)
.

Proof. We use the splitting B + D = (B + αD) + (1 − α)D, and by applying
Propositions 2.5 and 3.4 we find that

σ(A+D,B +D) ≤ max {σ(A,B + αD), σ(D, (1− α)D}

≤ max

{
σ(A,B) + σ(A,D)

ασ(A,B) + σ(A,D)
,

1

1− α
}

for any α such that 0 < α < 1. We want the tightest possible bound, which occurs
when the two arguments in max are equal. Hence we solve, for α, the equation

(1− α)(σ(A,B) + σ(A,D)) = ασ(A,B) + σ(A,D),
which has the solution

α =
σ(A,D)(1 + σ(A,B)

σ(A,B)(1 + σ(A,D))
.

The desired support bound is 1/(1− α), which after some algebra is shown to equal

1

1− α =
σ(A,B)(1 + σ(A,D))

σ(A,B) + σ(A,D)
=

1 + σ(A,D)

1 + σ(A,D)/σ(A,B)
.

6. Schur complement support. Another special matrix structure that com-
monly arises in practice is the Schur complement—the remaining portion of a matrix
after a subset of rows and columns has been factored (by Gaussian elimination). This
section contains tools to address this special matrix structure.

A matrix can be supported in a “higher-dimensional space” using the Schur com-
plement.

Proposition 6.1. Let A and B be spsd and of the form

A =

(
A11 0
0 0

)
, B =

(
B11 B12

BT
12 B22

)
,

where B22 is nonsingular. Then σ(A,B) = σ(A11, B11 −B12B
−1
22 B

T
12).

Proof. Let GT = ( I −B12B
−1
22

0 I
), which is always nonsingular. Let S denote the

Schur complement B11 − B12B
−1
22 B

T
12. It is easy to verify that GTAG = A and

GTBG = ( S 0
0 B22

). By Proposition 3.11, σ(GTAG,GTBG) = σ(A,B). Since the
lower right block of A is zero, the support number is determined by the upper
left blocks of the block diagonal matrix pencil (GTAG,GTBG), and we have that
σ(GTAG,GTBG) = σ(A11, S).

A useful special case of the preceding result is as follows.
Corollary 6.2. Suppose A and B are spsd and of the form

A =

(
A11 0
0 0

)
, B =

(
αA11 + V V

T βV
βV T β2 I

)
,
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where α > 0, β 	= 0, and V is any matrix of appropriate dimensions. Then

σ(A,B) = 1/α.

Proof. Proposition 6.1 yields

σ(A,B) = σ(A11, αA11 + V V
T − βV β−2βV T )

= σ(A11, αA11) = 1/α.

This corollary contains the clique-star lemma from [11, 6] as a special case, where
α = 1/k, β = 1, A11 = kI − eeT , V = e, and e is a vector of all ones. The clique-
star lemma was used by Gremban [11] in the analysis of multilevel support-graph
preconditioners (see also [6]).

7. Hadamard product support. In this section we restate some known re-
sults about eigenvalues and Hadamard products in terms of support numbers. The
Hadamard product is the elementwise matrix product; that is, if C = A ◦ B, then
cij = aijbij for all i, j. Schur [25] proved several properties of the Hadamard product,
including the important results below.

Lemma 7.1. If A and C are both spsd, then

λmin(A)λmin(C) ≤ λi(A ◦ C) ≤ λmax(A)λmax(C) for all i.

Corollary 7.2. If A and C are both spsd, then A ◦ C is also spsd.
The next proposition follows directly from Schur’s results.
Proposition 7.3. If A, B, and C are spsd, then

σ(A ◦ C,B ◦ C) ≤ σ(A,B).
Proof. Let τ = σ(A,B), so τB − A is spsd. By Corollary 7.2, (τB − A) ◦ C =

τ(B ◦ C)−A ◦ C is also spsd for any spsd C.
Restating a variation of Schur’s result [23, Lemma 2.1] in support theory notation,

we get the proposition below.
Proposition 7.4. Suppose A is spsd and C is symmetric. Let DA denote the

diagonal matrix with the same diagonal as A. Then

σ(A ◦ C,DA) ≤ λmax(C).

If C is spd, then we also have

σ(DA, A ◦ C) ≤ 1

λmin(C)
.

Fiedler and Markham [9] proved the following result.
Proposition 7.5. Suppose A is spsd and C is spd. Then

σ(A,A ◦ C) ≤ eTC−1e,

where e is the all-ones vector.
This result may be useful in our context when, for example, the preconditioner B

has a sparsity pattern that is a subset of the nonzeros of A, so there exists a C such
that A◦C = B. As a simple example, consider the case when B (and hence also C) is
diagonal. Then σ(A,B) ≤ ∑

i(aii/bii). Observe that when B = I this bound reduces
to the well-known trace bound, λmax(A) ≤ tr(A) =

∑
i aii.

Recently, several extensions to the Fiedler–Markham result (Proposition 7.5) have
been developed [23, 15]. These extensions hold when C is either positive definite or
conditionally positive definite, that is, positive definite in a subspace.
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8. Supporting negative semidefinite parts. It is trivial to support a negative
semidefinite matrix.

Proposition 8.1. If A is negative semidefinite, then σ(A, 0) = −∞. Further-
more, σ(A,B) ≤ 0 for any psd B.

This proposition gives us two preconditioning strategies when applied to a part
Ai of a matrix A. First, any negative semidefinite part of A can be ignored (pre-
conditioned by 0). We remark that a better condition number bound may possibly
be obtained by utilizing the negative semidefinite part. Second, we can add any psd
matrix Bi to a preconditioner B and the support number σ(A,B) will not increase.
Implicitly, there is a corresponding term Ai = 0, so σ(Ai, Bi) ≤ 0 for any psd Bi. It
may seem strange to make the preconditioner B more complicated than necessary, but
in fact B can often be made “simpler” (for example, sparser) by adding additional psd
terms. This strategy is particularly well suited for canceling out off-diagonal elements
that make the preconditioner hard to factor.

Recall that when we split a preconditioner B into parts, B =
∑

iBi, we normally
require that all Bi be psd. There is one exception to this rule. A matrix Bi may
be indefinite or negative definite if it is supported by a set of psd matrices

∑
j∈S Bj

with support at most one. The combined matrix Bi +
∑

j∈S Bj is then psd. In the
expression

τB −A = τ

k′∑
i=1

Bi −
k∑

i=1

Ai,

A and B are not necessarily decomposed into the same number of terms; that is,
k′ 	= k is allowed. Hence some terms in B can be used to support non-psd terms in
B. A special case of this technique was used by Bern et al. [6, section 3.2].

9. Laplacian matrices and support graphs. As mentioned in the introduc-
tion, several previous authors have analyzed preconditioners using a closely related
technique called support-graph theory. In this section we review the essentials of
support-graph theory and show that they are a special case (albeit a very useful one)
of our basis support results from section 4. Specifically, in Theorem 4.4 we showed how
to support a rank-1 matrix uuT with a larger symmetric matrix V V T . In support-
graph theory the vectors u and the columns of v are generally limited to have two
nonzeros each. And the two nonzeros are of equal magnitude. Recall that a basic
tool in support theory is to split a general matrix into simpler parts. What classes of
matrices can be split into sums of such restricted outer products?

Consider first the case where the two nonzeros in u are of opposite sign, so ui =
√
α

and so uj = −√
α. Then the nonzero portion uuT (in rows/columns i and j) is

(
α −α
−α α

)
.

A positive linear combination of such matrices can produce any matrix that is spsd,
diagonally dominant, has nonpositive off-diagonal elements, and has zero row sums.
We call this class of matrices Laplacians (Gremban called them generalized Lapla-
cians [11]). This class of matrices includes many standard discretizations of Laplace’s
or Poisson’s equation and other elliptic equations and so is quite important in prac-
tice. By also including u vectors with a single nonzero, one can augment the diagonal
values, thus allowing matrices with positive row sums. This corresponds to different
(e.g., Dirichlet) boundary conditions in the differential equation.
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If we also allow the two nonzeros in the u vector to be of equal sign, then the
nonzero contribution from uuT is (

α α
α α

)
.

Any positive linear combination of such matrices is spsd and diagonally dominant,
but now the off-diagonal values are nonnegative. Combining all these observations, it
is easy to show the following.

Proposition 9.1. A symmetric matrix A with nonnegative diagonal entries is
diagonally dominant if and only if there exists a decomposition of the form A = UUT ,
where each column of U has either one nonzero or exactly two nonzero entries and
these two entries have the same magnitude. Furthermore, if all off-diagonal entries
of A are nonpositive, then A is also an M-matrix, and any column of U with two
nonzeros has entries of opposite signs.

The columns of U are easy to construct in linear time. Each symmetric pair of
off-diagonal nonzeros in A corresponds to a single column of U . Additional columns
of U can be added to augment the diagonals. This correspondence between nonzeros
of A and simple columns of U can be expressed in terms of graphs. Specifically,
consider the rows of the symmetric matrix A to be vertices of a graph, and for each
nonzero off-diagonal aij add an edge between vertices i and j with weight equal to aij .
Note that each such edge corresponds to a column of U . This relationship between
Laplacian matrices, and more generally, diagonally dominant matrices, and graphs is
at the heart of support-graph theory.

Key tools in support-graph theory are various forms of what are called congestion-
dilation lemmas. Here we show that they follow directly from Theorem 4.4. A path
between vertices i and j is a series of edges which leads from i to j. Let eij be
a vector corresponding to the edge between i and j in which all elements are zero
except for eiji = 1 and eijj = −1. Define Eij = eij(eij)T . Consider the set of
vectors comprising a path from i to j. By adding or subtracting these vectors as
appropriate, all the intermediate values will cancel and the result will be equal to eij .
In this way, a path can be used to support an edge. In particular, as we state more
formally below, the support number is equal to the dilation, the number of edges in
the path. A preconditioner containing a set of such paths can be built which supports
any symmetric, diagonally dominant matrix with nonpositive off-diagonals. This was
Vaidya’s key observation and is a principal idea in support-graph theory.

Note that a single edge in the preconditioner might be on many such support
paths. In this case, the support number also depends on the number of paths it must
support—its congestion. These observations are made more rigorous in the following
results.

Proposition 9.2 (path congestion-dilation). Suppose A = aE1,k+1 for some k

and that B =
∑k

i=1 biE
i,i+1, where a, bi > 0 and Eij is as defined above. Then

σ(A,B) =

k∑
i=1

a

bi
.

Proof. From Theorem 4.4 with u =
√
ae1,k+1 and V = (

√
b1e

1,2,
√
b2e

2,3, . . . ,√
bke

k,k+1) we find that w = (
√

a
b1
, . . . ,

√
a
bk
)T , and the result follows.

This proposition says that the support is bounded by the sum of the edge con-
gestions along a path. In the simpler case where all edge weights in B are constant
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(i.e., bi = b for all i), the support number is just σ(A,B) = k (a/b), where k is the
length of the path. (This was proven in [6].) The path congestion-dilation proposition
is not new; variations have been stated by Gremban [11, Lemma 4.6] and by Guat-
tery [13]. The proposition above was also (implicitly) used by Guattery, Leighton,
and Miller [14] in their path resistance method to bound the Fiedler eigenvalue of
Laplacians.

The preceding proposition considers only the support for a single edge by a single
path. More interesting is the case for a set of edges being supported by a set of paths;
that is, we have a graph embedding. The set of edges will correspond to a matrix
A and the set of paths to a preconditioner B, where both A and B are Laplacians.
Represent A and B by graphs GA and GB , respectively, and each edge e ∈ GA is
mapped to a path in GB that connects the endpoints of e. (Note that a path may
be a single edge.) One strategy is to use the splitting proposition and break A into a
sum of edges and B into a sum of paths, and apply Proposition 9.2 to each of these
pairs. The following result ensues.

Proposition 9.3 (basic graph congestion-dilation). Given Laplacian matrices
A and B, choose a mapping of the edges in the graph GA onto paths in GB. For each
e ∈ E(GA), let path(e) denote the corresponding path in GB, and let c(f) denote the
number of supporting paths an edge f participates in, where f ∈ E(GB). Then

σ(A,B) ≤ max
e∈E(GA)

∑
f∈path(e)

ae c(f)

bf
.

This result is a slight extension of the “worst congestion times worst dilation”
bound used in [11, 6]. With our symmetric product theorem (Theorem 4.5), we can
show the following stronger result, which to the best of our knowledge is new.

Theorem 9.4 (graph congestion-dilation). Given Laplacian matrices A and B,
choose a mapping of the edges in the graph GA onto paths in GB. For each e ∈ E(GA),
let path(e) denote the corresponding path in GB. Then

σ(A,B) ≤

 max

e∈E(GA)

∑
f∈path(e)

√
ae
bf





 max

f∈E(GB)

∑
e|f∈path(e)

√
ae
bf


 ,

and also

σ(A,B) ≤
∑

e∈E(GA)

∑
f∈path(e)

ae
bf

=
∑

f∈E(GB)

∑
e|f∈path(e)

ae
bf
.

Proof. Let U, V have the structure described in Proposition 9.1 and UUT = A
and V V T = B. Let wef =

√
ae/

√
bf , where e ∈ E(GA) and f ∈ E(GB) if f belongs

to path(e). It is straightforward to verify that for appropriately chosen signs (the signs
do not affect the norms of W ), W = {±wef} satisfies VW = U . By Theorem 4.5 and
Lemma 4.9, σ(A,B) ≤ ‖W‖1‖W‖∞ and also σ(A,B) ≤ ‖W‖2

F .
In the unweighted case (ae, bf , and wef are 0 or 1), the first bound has a simple

interpretation: The first term, maxe
∑

f wef , is the maximum number of support
paths that include any particular edge—that is, the maximum congestion. The second
term, maxf

∑
e wef , is the length of the longest path, or the maximum dilation. Thus

the support number is bounded by the product of the maximum congestion and the
maximum dilation. In the weighted case, the square roots in the definition of wef are
significant and our result is different from previously used bounds.
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The second bound, based on the Frobenius norm, shows that the support number
is bounded by the sum of all congestions, or, equivalently, the sum of all dilations in
the graph embedding. This bound is tighter than the bound in Proposition 9.3. In
the weighted case, the two bounds given in Theorem 9.4 are not comparable.

Theorem 9.4 assumes that each edge in GA is supported by a unique path in GB .
More generally we can support an edge by a (finite) set of paths. This corresponds
to a fractional mapping where each edge weight may be split up into several parts
and mapped to different paths in GB . It is straightforward to extend the theorem to
fractional mappings.

Vaidya [28] used the above graph interpretation to construct preconditioners for
Laplacian matrices based on maximum-weight spanning trees. A spanning tree is a
tree that spans all vertices of a given graph, and in which the weight of a tree is the sum
of the weights of the edges in the tree. There are efficient algorithms to find spanning
trees of maximum weight. One advantage of using a tree is that the corresponding
matrix can be factored in linear time with no fill. It is easy to show that the edges
of a spanning tree constitute a basis for a graph and hence also for a Laplacian.

Vaidya showed [28, 6] that when A is Laplacian and B is the matrix that corre-
sponds to the maximum-weight spanning tree for the graph of A, then σ(B,A) ≤ 1
and σ(A,B) ≤ mn, where n is the number of vertices and m is the number of edges
in the graph. (m is about half the number of nonzeros in A.) This implies that the
condition number of the preconditioned system B−1A is at most of order mn, inde-
pendent of the matrix coefficients. The (upper) bound mn can be reduced by adding
additional edges (nonzeros) to the preconditioner, which lowers the condition num-
ber but increases the work per iteration in an iterative solver. The optimal trade-off
depends on the graph type (e.g., planar).

Vaidya claimed but did not prove that his techniques could be extended to all
diagonally dominant matrices (that is, graphs with both positive and negative edge
weights). We finally prove this claim in recent work with Chen and Toledo [7] using
techniques from the present paper. One key idea is to factor A into A = UUT , where
each column of U has at most two nonzeros, but these two elements may have the
same sign (cf. Proposition 9.1). The preconditioner B = V V T is chosen such that the
columns of V are a subset of the columns of U , and V is a basis for the range of U .

10. Example: Block Jacobi. In this section, we show how support theory can
be used to analyze the well-known block Jacobi preconditioner for a model problem.
The analysis is purely algebraic. We reproduce known bounds in a different and
perhaps simpler way.

10.1. The one-dimensional model problem. We start with the one-dimen-
sional (higher dimensions will be considered later) Laplace equation with Dirichlet
boundary conditions,

−uxx = f(x), x ∈ Ω = [0, 1].

Suppose that Ω has been uniformly discretized using n points, and let h = 1/n. We
need to solve a system Au = f , where A is a tridiagonal matrix with all 2’s on the
diagonal and −1 on the sub- and superdiagonals, and u and f are discretizations of
u(x) and f(x), respectively.

We wish to analyze the block Jacobi method, which corresponds to a simple
domain decomposition method without overlap. Let B be the block Jacobi operator
for a certain decomposition of A. Note that we do not assume that the blocks have
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the same sizes, or, in other words, the subdomains may vary in size. Let q denote the
number of subdomains, or, equivalently, the number of diagonal blocks in B.

Consider the following example, where n = 7 and q = 3:

A =




2 −1
−1 2 −1

−1 2 −1

. . .
. . .

−1 2 −1
−1 2




, B =




2 −1
−1 2 −1

−1 2
2 −1
−1 2

2 −1
−1 2




.

We now bound the eigenvalues of the preconditioned operator B−1/2AB−1/2 using
support theory. Recall (see Definition 2.1) that the support number σ(A,B) is roughly
given by σ(A,B) = min{t | tB − A is psd} and that κ(B−1A) ≤ σ(A,B)σ(B,A)
(Proposition 2.4). It is easy to bound σ(A,B), so the bound that is harder to prove
is σ(B,A).

Lemma 10.1. Let A be the discrete Laplace operator as defined above, and let B
be a block diagonal approximation for A formed by dropping some of the off-diagonal
entries. Then σ(A,B) ≤ 2.

Proof. We observe that 2B−A is diagonally dominant with positive diagonal and
hence psd (by Lemma 5.1). Thus, σ(A,B) ≤ 2 because t = 2 in Definition 2.1 ensures
that tB −A is psd.

In order to bound σ(B,A) we will use the symmetric product support theorem
(Theorem 4.5). We factorize A = V V T and B = UUT , where V is n by (n+ 1) and
U is n by (n+ q). For our example, we obtain

V =




1 1
−1 1

−1 1

. . .
. . .

−1 1
−1 1




, U =




1 1
−1 1

−1 1
1 1

−1 1
1 1

−1 1




.

We seek a matrix W such that VW = U . Clearly, there are many choices for W .
We would like W to have small norm(s). The following short algorithm constructs a
suitable W :

Input: V, U, n, q
Output: W such that VW = U

wij := 0 for all i, j
p := 0
for j := 1 to n + q

if Uj = Vk for some k, then wkj := 1
else // Uj must contain a single nonzero

p := p + 1
k := the index for which ukj = 1
if p < q, then

w1j := 1
for i := 2 to k, wij := −1, end

else
for i := k to n, wij := 1, end

endif
endif

end
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Since U and V have many columns in common, W by construction has mostly
columns with only one nonzero element, which is 1. A few columns of W will have all
nonzero entries either above or below a certain index k. One can verify that VW = U
using only elementary algebra. For our specific example, we get

W =




1 1 1
1 −1 −1

1 −1 −1
−1

1 1
1 1 1
1 1 1



.

By inspection, the largest (absolute) row sum in W for the example above is 3
and the largest (absolute) column sum is 4, so ‖W‖2

2 ≤ ‖W‖1‖W‖∞ ≤ 12. Columns
in W with more than one nonzero correspond to boundaries between subdomains.
The corresponding columns in U have to be “supported” from the external boundary,
∂Ω. In general, W has at most q + 1 nonzeros in each row (one nonzero for each
boundary of q/2 subdomains plus one additional “diagonal” nonzero) and at most
(n + 1)/2 nonzeros in each column. Since each nonzero in W is ±1, it follows that
σ(B,A) ≤ ‖W‖1‖W‖∞ ≤ (q + 1)(n+ 1)/2.

Lemma 10.2. Let A be the discrete Laplace operator as defined above, and let B
be a block diagonal approximation for A with q > 1 blocks formed by dropping some
of the off-diagonal entries. Then σ(B,A) ≤ (q + 1)(n+ 1)/2.

Another way to obtain this result is to use the congestion-dilation proposition
(Proposition 9.3) for graphs. In our case, we need support paths from the boundary
nodes to each interior node that is on the boundary of a subdomain. Consequently,
the dilation is O(n) while the congestion is O(q), which also gives the support bound
O(nq). (The factor 1/2 comes from routing half the support paths from each bound-
ary.)

By combining the two bounds on the support numbers, we get the following bound
on the condition number.

Theorem 10.3. Let A be the discrete Laplace operator as defined above, and
let B be a block diagonal approximation for A with q > 1 blocks formed by dropping
some of the off-diagonal entries. Then the condition number κ satisfies κ(B−1A) ≤
(q + 1)(n+ 1).

A more detailed analysis in [8] showed that the condition number is bounded by
qn+q+1. Our bound agrees with that bound up to a lower order term and is simpler
to derive. Since the Chang–Schultz bound is known to be tight [8], our bound is also
tight asymptotically.

For the special case where uniform blocks are used, let H = hn/q such that
H denotes the subdomain size. This gives us the well-known result from domain
decomposition that the condition number is bounded by O(1/(hH)).

10.2. Higher dimensions. We will show that the following result holds for
block Jacobi preconditioning in dimensions higher than one.

Theorem 10.4. Consider a regular n1 × n2 × · · · × nd grid in d dimensions. Let
A be the finite difference discretization of the Laplace equation. Suppose the domain
is partitioned into subdomains, possibly in an unstructured fashion. Let B be the
block Jacobi preconditioner corresponding to this partitioning (domain decomposition).
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Then

κ(B−1A) = O( max
1≤i≤d

niqi),

where qi is the maximum number of subdomains along any line in the ith dimension.
Proof. Split A = A1 + A2 + · · · + Ad and, similarly, B = B1 + · · · + Bd, where

Ai corresponds to the Laplace finite difference operator along the lines in the ith
dimension. Similarly, let Bi correspond to the block Jacobi approximation in the ith
dimension. By the splitting proposition (Proposition 2.5), we have that

σ(B,A) ≤ max
i

{σ(Bi, Ai)} .

Consider the algebraic equations along one line of gridpoints. Such a subset of equa-
tions corresponds precisely to the one-dimensional problem we analyzed in the previ-
ous section. Hence, σ(Bi, Ai) = O(niqi), and it follows that

σ(B,A) = O(max
i
niqi).

The desired condition number bound follows by noting that σ(A,B) ≤ 2 as in the
one-dimensional case.

For a regular grid on the unit cube with n1/d gridpoints in each dimension and a
uniform partitioning (H = 1/q) we obtain the expected bound σ(B,A) = O(1/(hH)).

10.3. Block Jacobi summary. We have rederived known bounds for block
Jacobi using support theory. While a traditional analysis is based on calculating the
eigenvectors (eigenfunctions) of the Laplacian, the support theory analysis is purely
algebraic and does not require analytic expressions for the eigenvectors. Our analysis
is a bit similar to the one in [8] but simpler in several ways. One advantage of
our analysis is that it is easy to analyze nonuniform (irregular) decompositions of a
domain. In this example, we examined only the Laplace equation on a structured
grid. Our analysis tools also apply to more complicated equations and unstructured
grids, though it is harder to obtain any general (a priori) bound.

11. Extensions to general matrices. Support theory was developed with spd
systems in mind. Nevertheless, much of the theory developed in the preceding sections
can be extended to general (including indefinite and nonsymmetric) matrices through
a small change in the definition of support number.

Definition 11.1. For matrices A ∈ R
m×n and B ∈ R

p×n with the same number
of columns, the generalized support number of (A,B) is defined by

σ̂(A,B) = min
{
t |xT (τ2BTB −ATA)x ≥ 0 for all x ∈ R

n and for all τ ≥ t} .
Note that generalized support numbers cannot be negative.
Since both BTB and ATA are spsd, all of the techniques introduced in the pre-

vious sections can be used to analyze σ̂(A,B). When BTB has full rank, then by
Theorem 2.3 σ̂(A,B) =

√
λmax(ATA,BTB) = µmax(A,B), where µmax(A,B) is the

largest generalized singular value of the matrix pencil (A,B). For a brief description
of generalized singular values, see section 8.7.3 of [10]. (We use µ to denote singular
values since the symbol σ has been reserved for support numbers in this paper.)

The spectral condition number κ2(C) is defined as κ2(C) = ‖C‖2‖C−1‖2 =
µmax(C)/µmin(C). For nonsingular B, it follows that κ2(B

−1A) ≤ σ̂(A,B)σ̂(B,A).
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When A and B are singular but share the same nullspace, then σ̂(A,B)σ̂(B,A) bounds
the effective condition number of the pencil (A,B) outside the nullspace. In short,
the generalized support number can be used to bound the condition number in much
the same way as the standard support number.

The quadratic form in the definition of generalized support can be factored in a
useful manner. Specifically, for A,B ∈ R

m×n,

xT (τ2BTB −ATA)x = xT (τBT −AT )(τB +A)x.

If A and B have different sizes, one can pad the smaller matrix with zeros. When A
and B are both symmetric, this factorization reveals a close relationship between the
generalized support number and the (standard) support number. Since the product
of two psd matrices that commute is also psd, the quadratic form on the right will be
nonnegative when both the matrix terms are psd. These terms have the form used in
standard support numbers, which leads to the following.

Proposition 11.2. If A and B are symmetric, then σ̂(A,B) ≤ max{σ(A,B),
σ(−A,B)}. Equality holds when B is spsd.

If B is not psd, then σ(A,B) is infinite and the bound becomes useless. In the case
where both A and B are spsd a further reduction is possible. In this case, σ(−A,B)
is nonpositive, so Proposition 11.2 reduces to the following.

Corollary 11.3. When A and B are both spsd, then σ̂(A,B) = σ(A,B).
Thus, generalized support numbers are strict generalizations of the support num-

bers we defined in section 2. Note, however, that there is a discrepancy in definitions
if either A or B is not psd. For example, if A is symmetric but negative definite, then
the standard support number σ will be negative and corresponds to the largest (right-
most) generalized eigenvalue of (A,B). In contrast, the generalized support number
σ̂ is always nonnegative and corresponds to the largest magnitude of a generalized
eigenvalue of (A,B).

Some of the propositions presented in this paper hold for generalized support
numbers as well as the standard support number, but not all. In particular, the
splitting proposition (Proposition 2.5) needs to be modified, as shown below.

Proposition 11.4. For splittings A = A1 +A2 and B = B1 +B2, where B
T
1 B2

is psd (possibly zero),

σ̂(A1 +A2, B1 +B2) ≤ max

{
σ̂(A1, B1), σ̂(A2, B2),

√
max{0, σ(AT

1 A2, BT
1 B2)}

}
.

Proof. We have that ATA = (A1+A2)
T (A1+A2) = A

T
1 A1+A

T
1 A2+A

T
2 A1+A

T
2 A2,

and similarly for BTB. Hence

xT (τ2BTB −ATA)x

≤ xT (
(τ2BT

1 B1 −AT
1 A1) + (τ2BT

2 B2 −AT
2 A2) + 2(τ2BT

1 B2 −AT
1 A2)

)
x.

Now choose τ by the right-hand side bound in the proposition. Since each of the three
terms in the quadratic form above is then nonnegative, the total quadratic form must
also be nonnegative. The desired result follows from Definitions 2.1 and 11.1.

In the special case when AT
1 A2 and BT

1 B2 are both zero, the proposition reduces
to the standard splitting property.

Finally, it is possible that the standard support number may provide an indication
about convergence even for non-spd systems. An analysis by Starke [27] shows that
the residual of the GMRES method can be bounded by a simple function of the



SUPPORT THEORY FOR PRECONDITIONING 715

support number (although he did not use that terminology). We have not tried to
determine which approach gives better bounds.

12. Summary and future work. All the results in this paper that hold for
real symmetric matrices generalize to complex Hermitian matrices. This feature com-
plements the work of Howle and Vavasis [16], who considered complex symmetric
matrices. It is more difficult to go from symmetric to nonsymmetric systems. A ma-
jor difficulty is that the correspondence between the support number and the largest
generalized eigenvalue (Theorem 2.3) breaks down. In section 11 we proposed to use
the generalized support number, which is closely related to the generalized singular
values, to bound the condition number in the non-spd case. The convergence analysis
for iterative methods for nonsymmetric problems is quite complicated and further
work is needed.

In the symmetric case, the Chebyshev (semi)iterative method [29, 31] can benefit
from support analysis because good bounds on the extreme eigenvalues are required.
We remark that Chebyshev iteration has the same worst-case complexity as conjugate
gradients but requires no inner products. This may give Chebyshev iteration an
advantage for large-scale problems on parallel computers. Also note that in general
the convergence of iterative methods depends not only on the extreme eigenvalues
but also on the distribution of all the eigenvalues. The support theory presented here
bounds only the extreme eigenvalues. It is more difficult to obtain bounds for interior
eigenvalues. See [1] for some such results.

The present paper extends the existing support-graph theory [6] from spsd, diag-
onally dominant M-matrices to a much wider class of matrices, namely, all spsd matri-
ces. Our framework is purely algebraic and no longer relies on graph theory (though
graphs may still be useful in an analysis). The work presented here has enabled us to
generalize Vaidya’s preconditioners to all spd diagonally dominant matrices [7]. Using
vectors with two nonzeros but possibly different magnitudes, we conjecture that the
max-weight-basis preconditioners can be extended to all H-matrices.

The authors believe that the tools presented in the present paper are well suited
both to analyze existing preconditioners and to develop new types of precondition-
ers. Promising candidates for analysis include incomplete factorizations and algebraic
multilevel methods. The earlier support-graph theory has already been successfully
applied to a multilevel preconditioner by Gremban [11], and to incomplete factor-
ization preconditioners by Guattery [13] and Bern et al. [6]. However, the results
are restricted to fairly specific problem instances and matrix classes. We hope that
the techniques presented in the present paper can be used to extend some of these
methods and results to all spd matrices.

The support preconditioners we and others have developed all rely on using the
rank-1 support theorem (Theorem 4.4) or the symmetric product support theorem
(Theorem 4.5) where columns of U and V correspond to edges in a graph (that is,
they have only two nonzeros and these have the same magnitude). An open question
is whether efficient preconditioners can be constructed that employ column vectors
with three or more nonzeros. Although the theory in the present paper can handle
this situation, a major obstacle in practice is that the resulting preconditioner may
be difficult to solve for (i.e., factorize).
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